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Abstract

The second-order diffraction potential around a bottom-seated compound cylinder is considered. The solution

method is based on a semi-analytical formulation for the double-frequency diffraction potentials, which are properly

decomposed into a rational number of components in order to satisfy all boundary conditions involved in the problem.

The solution process results in two different Sturm–Liouville problems which are treated separately in the ring-shaped

fluid regions defined by the geometry of the structure. The matching of the potentials on the boundaries of adjacent

fluid regions is established using the ‘free’ wave components of the potentials. Different Green’s functions are

constructed for each of the fluid regions surrounding the body. The calculation of integrals of the pressure distribution

on the free surface is carried out using an appropriate Gauss–Legendre numerical technique. The efficiency of the

method described in the present work is validated through comparative calculations. Finally, extensive numerical

predictions are presented concerning the complete second-order excitation and the nonlinear wave elevation for various

configurations of vertical axisymmetric bodies.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The solution of the second-order interaction problem between monochromatic and bichromatic waves and isolated

or interacting bodies has attracted the attention of many researchers, especially during the past two decades. Significant

improvements have been proposed in the literature to overcome the difficulties associated with the extensive numerical

calculations which are required for the solution of the second-order velocity potential and subsequently the derivation

of the nonlinear hydrodynamic loading and the free surface elevation. The afore-mentioned difficulties originate from

the contribution of the second-order potential which has to satisfy the inhomogeneous boundary condition on the free

surface. The solution process involves calculation of integrals in which the integrand exhibits strongly oscillatory

behaviour.

The majority of the proposed solution methods which treat the problem of the second-order diffraction potential

could be categorized into two major ensembles. The ‘indirect’ method was introduced independently by Lighthill (1979)

for infinite water depth and Molin (1979) for finite water depth. According to this method, the calculation of the

second-order potential is avoided by employing an ‘assisting’ first-order radiation potential. This method can be applied
e front matter r 2006 Elsevier Ltd. All rights reserved.
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also for bodies with arbitrary shape and it was used thereafter by many researchers (Eatock Taylor and Hung, 1987;

Abul-Azm and Williams, 1988, 1989a, b; Williams et al., 1990; Ghalayini and Williams, 1991; Mavrakos and Peponis,

1992; Moubayed and Williams, 1994, 1995; Liu et al., 1995; Rahman et al., 1999).

The second method, the so-called ‘direct’ method, allows the derivation of the second-order diffraction potential and

subsequently the calculation of the pressure field around the body as well as the free surface elevation. The first attempt

in that context was made by Loken (1986) for arbitrarily shaped bodies. Kim and Yue (1989, 1990) solved the second-

order interaction problem between monochromatic and bichromatic incident waves and vertical bottom-seated

axisymmetric bodies using the method of integral equations. The same method was used also by Chau and Eatock

Taylor (1992). Huang and Eatock Taylor (1996) and Eatock Taylor and Huang (1997) developed a semi-analytical

formulation for representing the second-order diffraction potential around truncated and bottom-seated cylinders,

respectively. The solution presented by Teng and Kato (1999) was based on the integral representation of the fluid field,

making use of an appropriate Green’s function while at the same time they proposed an alternative method for

calculating the integral on the free surface. Recently, Malenica et al. (1999) extended the semi-analytical formulation

proposed by Huang and Eatock Taylor (1996) for calculating the second-order diffraction potential around arrays of

vertical uniform bottom-fixed cylinders. They reported extensive numerical calculations concerning the hydrodynamic

loading and the wave run-up in various multiple cylinder arrangements.

Although the problem of solving the second-order diffraction potential for uniform and truncated axisymmetric

bodies is well treated in the literature, there is a lack of information for complex structures like compound cylinders.

The present paper constitutes a contribution in this direction, and the subject of investigation is a two-part bottom-

seated axisymmetric body. The main challenge that must be treated in the particular configuration is that the

inhomogeneous boundary condition should be satisfied in two fluid regions in the radial direction. The two second-

order diffraction potentials should subsequently be matched along the boundaries of these regions. The satisfaction of

all boundary conditions involved in the problem and the matching of the potentials is accomplished by defining a

‘locked’ and a ‘free’ wave potential in the outer field and a ‘trapped’ wave as well as a corresponding ‘free’ wave

potential in the upper inner field. The matching of the potentials is performed using the ‘free’ wave components. The

solution method is based on the semi-analytical expansion formulation proposed by Huang and Eatock Taylor (1996),

which is extended in the present analysis to represent the complete second-order diffraction potential in the upper inner

field as well. It should also be noted that although the body which is studied is fixed on the bottom, the inhomogeneous

term of the nonlinear free surface condition is used in its general form. Therefore, the specific formulation can be

appropriately extended for floating compound cylinders.
2. Formulation of the second-order problem for a bottom-seated compound cylinder

We consider a vertical compound axisymmetric body exposed to the action of a monochromatic incident wave of

frequency o and linear amplitude H/2. The body, for which the main dimensions are given in Fig. 1, is fixed in water of

depth h. A cylindrical coordinate system (r, y, z) is chosen, with its origin on the sea bed and its Oz axis pointing

vertically upwards.
b1

A B B A

h 

z 

h1 b

Fig. 1. Bottom-seated compound cylinder: main dimensions and fluid regions.
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The total second-order velocity potential can be written as

f2ðr; y; z; tÞ ¼ Re j2ðr; y; zÞe
�2iot

� �
. (1)

The spatially dependent counterpart j2(r, y, z) should satisfy the Laplace equation in the whole fluid region

surrounding the body,

r2j2 ¼ 0 in
bpr; 0pzph;

b1prpb; h1pzph

(
(2)

and the following boundary conditions:

qj2

qz

� �
z¼0

¼ 0; bpr, (3)

qj2

qz

� �
z¼h1

¼ 0; b1prpb, (4)

�4nj2 þ
qj2

qz

� �
z¼h

¼ qðr; yÞ; b1pr, (5)

qj2

qr

� �
r¼b

¼ 0; 0pzph1, (6)

qj2

qr

� �
r¼b1

¼ 0; h1pzph, (7)

where n ¼ o2=g. Furthermore q(r,y) is the effective pressure distribution on the free surface, which is expressed as

qðr; yÞ ¼
io
g

2
qjI

1

qr

qjD
1

qr
þ

2

r2
qjI

1

qy
qjD

1

qy
þ 3n2 �

k2

2

� �
jI
1j

D
1 �

1

2

�
jI
1

q2jD
1

qz2

þ
qjD

1

qr

qjD
1

qr
þ

1

r2
qjD

1

qy
qjD

1

qy
þ
3

2
n2jD

1 j
D
1 �

1

2
jD
1

q2jD
1

qz2

�
z¼h

þ qII , ð8Þ

where qII expresses the contribution from the quadratic products of the first-order incident wave potential. The

wavenumber k is derived through the imaginary solution a0 ¼ �ik of the first-order transcendental equation

aj tanðajhÞ þ n ¼ 0, (9)

which in turn leads to the corresponding first-order dispersion equation

k tanhðkhÞ ¼ n. (10)

In Eq. (8), jI
1 and jD

1 denote the first-order incident wave and diffraction potentials, respectively. A suitable way to

express the effective pressure distribution is the following (Chau and Eatock Taylor, 1992):

qðr; yÞ ¼
X1

m¼�1

qmðrÞe
imy. (11)

The fundamentals of the method described herein for the solution of the second-order diffraction problem of the

compound cylinder under consideration are similar to those applied for the solution of the first-order problem. Thus,

the fluid field is separated into ring-type regions denoted by A and B (Fig. 1) and different first- and second-order

velocity potentials are defined for each region. The second-order diffraction problem in each of these regions is treated

separately, and eventually the solution methodology is accomplished by matching the potentials along the cylindrical

boundary on r ¼ b.

2.1. Second-order velocity potential for field B

The total second-order diffraction potential in field B, j2B, should satisfy the Laplace equation and the following

boundary conditions which are obtained by the generic Eqs. (3)–(7):

qj2B

qz

� �
z¼h1

¼ 0; b1prpb, (12)
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�4nj2B þ
qj2B

qz

� �
z¼h

¼ qBðr; yÞ; b1prpb, (13)

qj2B

qr

� �
r¼b1

¼ 0; h1pzph, (14)

where the effective pressure distribution qB(r,y) is given by Eq. (8) in which, in lieu of jD
1 , the first-order diffraction

potential jD
1B is used.

Furthermore, j2B and the total second-order velocity potential in the outer field A, j2A, should satisfy the following

matching conditions on the boundary between fields A and B:

qj2B

qr
¼

qj2A

qr
; r ¼ b; h1pzph (15)

and

j2B ¼ j2A; r ¼ b; h1pzph. (16)

In order to properly satisfy boundary conditions (12)–(14), j2B is decomposed into two components according to

j2B ¼ jID
2B þ jDD

2B . (17)

It should be noted that Eq. (17) includes the influence of second-order incident waves.

Both parts on the right-hand side of Eq. (17) satisfy individually the Laplace equation in the entire field B and the

zero velocity condition on the horizontal step z ¼ h1. Thus,

r2jID
2B ¼ 0; r2jDD

2B ¼ 0; b1prpb; h1pzph (18a,b)

and

qjID
2B

qz

� �
z¼h1

¼ 0;
qjDD

2B

qz

� �
z¼h1

¼ 0; b1prpb. (19a,b)

Also, both components have to satisfy the zero velocity condition on the structure for r ¼ b1:

qjID
2B

qr

� �
r¼b1

¼ 0;
qjDD

2B

qr

� �
r¼b1

¼ 0; h1prph. (20a,b)

Concerning the free-surface boundary condition (13) for the components jID
2B and jDD

2B , they are expressed using the

following homogeneous and inhomogeneous relations, respectively:

�4njID
2B þ

qjID
2B

qz

� �
z¼h

¼ 0; b1prpb, (21)

�4njDD
2B þ

qjDD
2B

qz

� �
z¼h

¼ qBðr; yÞ; b1prpb. (22)

Before we proceed to the explanation of the solution methodology, it is advisable to provide some important

information regarding the calculation of the effective pressure distribution qB(r,y). In Eq. (8) which is used for

expressing qB(r,y), the subscript 1 denotes the first-order velocity potential, while superscripts I and D denote the

incident and the diffraction components, respectively. In the present study, the total first-order velocity potential—

including both incident and diffracted wave fields—in the fluid region B is derived in the form proposed by Mavrakos

and Koumoutsakos (1987):

j1B ¼ �io
H

2

X1
m¼�1

imCð1BÞ
m ðr; zÞe

imy, (23)

1

h
Cð1BÞ

m ðr; zÞ ¼
X1
j¼0

F
ð1BÞ
mj R

ð1BÞ
mj ðrÞY jðzÞ, (24)
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where

R
ð1BÞ
mj ðrÞ ¼ RmjðrÞ �

R0mjðb1Þ

R0
�

mjðb1Þ
R�mjðrÞ, (25)

RmjðrÞ ¼
Kmðmjb1ÞImðmj rÞ � Imðmjb1ÞKmðmjrÞ

ImðmjbÞKmðmjb1Þ � Imðmjb1ÞKmðmjbÞ
, (26)

R�mjðrÞ ¼
ImðmjbÞKmðmj rÞ �KmðmjbÞImðmjrÞ

ImðmjbÞKmðmjb1Þ � Imðmjb1ÞKmðmjbÞ
. (27)

Moreover, Im and Km are the mth order modified Bessel functions of the first- and second kind, respectively, and Yj(z)

are orthonormal functions in [h1,h] defined by

Y 0ðzÞ ¼M
�1=2
0 coshðkBðz� h1ÞÞ; (28)

Y jðzÞ ¼M
�1=2
j cosðmjðz� h1ÞÞ for jX1, (29)

M0 ¼
1

2
1þ

sinhð2kBðh� h1ÞÞ

2kBðh� h1Þ

� �
, (30)

Mj ¼
1

2
1þ

sinð2mjðh� h1ÞÞ

2mjðh� h1Þ

" #
for jX1, (31)

where mj are the roots of the transcendental equation

nþ mj tanðmjðh� h1ÞÞ ¼ 0. (32)

Eq. (32) has an infinite number of real roots for jX1 and one imaginary root m0 ¼ �ikB, which leads to the first-order

dispersion equation for the upper inner field B

kB tanhðkBðh� h1ÞÞ ¼ n. (33)

Since j1B along with Cð1BÞ
m ðr; zÞ (see Eqs. (23) and (24), respectively) denote the total linear velocity potential in B, for

calculating the inhomogeneous term in Eq. (22), the diffraction potential will be delivered from Eq. (23) after

subtracting the first-order incident wave.

It can be shown that the effective pressure distribution qB(r,y) in B can be written in accordance with Eq. (11) as

qðr; yÞ
��
z¼h
¼
X1

m¼�1

qðBÞm ðrÞe
imy; qðBÞm ðrÞ ¼ �io

H

2

� �2
1

h
imQðBÞm ðrÞ. (34a,b)

The radial function QðBÞm ðrÞ is nondimensionalized.

In order to allow at a later stage the matching of potentials in fields B and A along their common boundary on r ¼ b,

we assume that jDD
2B satisfies

qjDD
2B

qr

� �
r¼b

¼ 0; h1pzph. (35)

In other words the velocity field that is described by jDD
2B represents a ‘trapped’ wave component in the fluid annulus

that radially extends between b1 and b. The equation of the radial velocities and potentials along the boundary of fields

A and B, is incorporated into the formulation through proper evaluation of jID
2B. This will be discussed in Section 2.3.

2.2. Second-order ‘trapped’ wave potential jDD
2B due to free surface forcing

According to the preceding analysis, there is sufficient material for the discrete evaluation of the ‘trapped’ wave

potential. The governing system to be considered consists of Eqs. (18b), (19b), (20b), (22) and (35). A general expression

that satisfies Eqs. (19b) and (22) is given by

jDD
2B ðr; y; zÞ ¼

coshðbðz� h1ÞÞ

n coshðbðh� h1ÞÞ

X1
m¼�1

qðBÞm ðrÞe
imy þ

X1
m¼�1

X1
j¼0

RmjðrÞY
ð2Þ
j ðzÞe

imy, (36)
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where

b tanhðbðh� h1ÞÞ ¼ 5n, (37)

4nþ sj tanðsjðh� h1ÞÞ ¼ 0, (38)

while Y
ð2Þ
j ðzÞ are orthonormal functions in [h1,h] given by

Y
ð2Þ
j ðzÞ ¼ M

ð2Þ
j

� 	�1=2
cosðsjðz� h1ÞÞ, (39)

M
ð2Þ
j ¼

1

2
1þ

sinð2sjðh� h1ÞÞ

2sjðh� h1Þ

� �
. (40)

By analogy to the first-order transcendental Eq. (32), Eq. (38) has an infinite number of real roots for jX1 and one

imaginary root s0 ¼ �irB given by the second-order dispersion equation

rB tanhðrBðh� h1ÞÞ ¼ 4n. (41)

In this special case, the orthonormal functions will be given by

Y
ð2Þ
0 ðzÞ ¼ M

ð2Þ
0

� 	�1=2
coshðrBðz� h1ÞÞ, (42)

M
ð2Þ
0 ¼

1

2
1þ

sinhð2rBðh� h1ÞÞ

2rBðh� h1Þ

� �
. (43)

Eq. (36) is introduced into the Laplace Eq. (18b). After equating terms of the same order m and making use of the

eigenfunction expansion technique in the z direction, the following is derived:

d2FmjðrÞ

dr2
þ
1

r

dFmjðrÞ

dr
�

m2

r2
þ s2j

� �
FmjðrÞ þ Bjq

ðBÞ
m ðb

2
þ s2j Þ ¼ 0, (44)

where

FmjðrÞ ¼ RmjðrÞ þ Bjq
ðBÞ
m ðrÞ, (45)

Bj ¼
1

h� h1

Z h

h1

cosh bðz� h1Þð Þ

n coshðbðh� h1ÞÞ
Y
ð2Þ
j ðzÞdz ¼

1

h� h1

1

s2j þ b2
Y
ð2Þ
j ðhÞ. (46)

In order to calculate FmjðrÞ, we consider the following Sturm–Liouville problem which is obtained after rearranging

terms in Eq. (44):

ðrF0mjðrÞÞ
0
�

m2

r
þ s2j r

� �
FmjðrÞ ¼ �

r

h� h1
Y
ð2Þ
j ðhÞq

ðBÞ
m ðrÞ; b1prpd; (47)

where the primes denote differentiation with respect to radius r. Next, we seek a solution of the form

FmjðrÞ ¼
Y
ð2Þ
j ðhÞ

h� h1

Z b

b1

xqðBÞm ðxÞG
ðBÞ
mj ðr; xÞdx, (48)

where G
ðBÞ
mj ðr; xÞ is the one-dimensional Green’s function.

Construction of Green’s function for the ‘trapped’ wave component

The first property of Green’s function is that it satisfies the corresponding homogeneous problem

rG0
ðBÞ
mj

� 	0
�

m2

r
þ s2j r

� �
G
ðBÞ
mj ¼ 0. (49)

Gmj must be continuous at r ¼ x and Gmj
0 must be discontinuous at r ¼ x, with a discontinuity of

G0mjðr; rþÞ � G0mjðr; r�Þ ¼ �
1

r
. (50)

Finally, G
ðBÞ
mj must satisfy the boundary conditions of FmjðrÞ on boundaries r ¼ b1 and r ¼ b. Thus, G0

ðBÞ
mj must be equal

to zero for r ¼ b1 and r ¼ b.
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Note that Eq. (49) is the modified Bessel equation. The properties of Green’s function (Hildebrand, 1962; Dettman,

1988) and the boundary conditions at r ¼ b1 and r ¼ b are applied to the solution of Eq. (49), i.e. to the modified Bessel

Functions I and K, to give

G
ðBÞ
mj ðr; xÞ ¼

1

gmj � dmj

½ImðsjrÞ � dmjKmðsjrÞ� � ½ImðsjxÞ � gmjKmðsjxÞ�; b1pxor, (51)

G
ðBÞ
mj ðr; xÞ ¼

1

gmj � dmj

½ImðsjrÞ � gmjKmðsjrÞ� � ½ImðsjxÞ � dmjKmðsjxÞ�; roxpb, (52)

where

gmj ¼ I0mðsjb1Þ=K
0
mðsjb1Þ and dmj ¼ I0mðsjbÞ=K

0
mðsjbÞ. (53a,b)

It is evident that the above form of Green’s function satisfies also the property of symmetry G
ðBÞ
mj ðr; xÞ ¼ G

ðBÞ
mj ðx; rÞ, as

required.

By using Eqs. (34a), (34b), (36), (45) and (48), the ‘trapped’ wave component can be recast after extensive

mathematical manipulations into

jDD
2B ðr; y; zÞ ¼ �io

H

2

� �2 X1
m¼�1

imCð2B;DDÞ
m ðr; zÞeimy, (54)

where

Cð2B;DDÞ
m ðr; zÞ ¼

kb1

kh

kb1

kðh� h1Þ

X1
j¼0

Y
ð2Þ
j ðzÞY

ð2Þ
j ðhÞ

Z b=b1

1

x
b1

QðBÞm

x
b1

� �
G
ðBÞ
mj

r

b1
;
x
b1

� �
d

x
b1

� �
. (55)

2.3. Second-order ‘free’ wave potential jID
2B

The form which was adopted for the ‘trapped’ wave component jDD
2B and was expressed through Eq. (54) will also be used

in the following, for all second-order potentials in both fields A and B. As far as the ‘free’ wave component jID
2B is concerned,

a general expression that satisfies the kinematical condition on the horizontal step Eq. (19a), the homogeneous free surface

condition (21) and the Laplace Eq. (18a), will be given by an equation similar to (54), where Cð2B;IDÞ
m is expressed as

Cð2B;IDÞ
m ðr; zÞ ¼

X1
j¼0

F
ð2BÞ
mj R

ð2BÞ
mj ðrÞY

ð2Þ
j ðzÞ, (56)

while R
ð2BÞ
mj ðrÞ is described as indicated in Eqs. (25)–(27) provided that mj is replaced by sj.

A quick inspection of R
ð2BÞ
mj ðrÞ verifies that the ‘free’ wave component Cð2B;IDÞ

m satisfies also the requirement for zero

velocity on the wall, along the inner radius r ¼ b1.

2.4. Second-order diffraction potential for the outer field A

The outer fluid domain A is extended from r ¼ b to infinity. Thus, for the derivation of the corresponding diffraction

potential, the equivalent bottom-seated cylinder with radius b can be considered. The problem of finding the second-

order diffraction potential for a uniform bottom-seated, surface-piercing, vertical cylinder is well posed in the literature,

as it has attracted the attention of several researchers in recent years, as discussed in the Introduction. Therefore, the

part of the present paper which deals with that specific problem is inevitably short.

The total second-order velocity potential j2A for the outer wave field A should satisfy the Laplace equation and the

following boundary conditions:

qj2A

qz

� �
z¼0

¼ 0; bpr, (57)

�4nj2A þ
qj2A

qz

� �
z¼h

¼ qAðr; yÞ; bpr, (58)

qj2A

qr

� �
r¼b

¼ 0; 0pzph1. (59)
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For the complete description of the hydrodynamic problem in the outer field A, Eqs. (57)–(59) should be

supplemented by Eqs. (15) and (16) which express the continuity of velocities and potentials on the common boundary

between fields A and B.
In Eq. (58), qA(r,y) is the effective pressure distribution on the free surface of the outer field A and it is given by Eq.

(8), provided that jD
1 is replaced by the first-order diffraction potential jD

1A.

According to the majority of the proposed methods, the potential is decomposed into three components: the double

frequency incident wave jI
2, the ‘locked’ wave jDD

2A and the ‘free’ wave jID
2A. Thus,

j2A ¼ jI
2 þ jID

2A þ jDD
2A . (60)

All three component potentials should satisfy individually the Laplace equation. The second-order undisturbed

incident wave potential jI
2 is expressed by (Mei, 1983)

jI
2ðr; y; zÞ ¼ �io

H

2

� �2 X1
m¼�1

imCI
mðr; zÞe

imy, (61)

CI
mðr; zÞ ¼

3

8

coshð2kzÞ

sinh4ðkhÞ
Jmð2krÞ, (62)

where Jm is the mth order Bessel function of the first kind. Furthermore, with regard to the ‘locked’ wave and the ‘free’

wave components, the boundary conditions which must be satisfied and which will allow later the matching of total

potentials of fields A and B, are

qjID
2A

qz

� �
z¼0

¼ 0;
qjDD

2A

qz

� �
z¼0

¼ 0; bpr, (63a,b)

�4njID
2A þ

qjID
2A

qz

� �
z¼h

¼ 0; bpr, (64)

�4njDD
2A þ

qjDD
2A

qz

� �
z¼h

¼ qAðr; yÞ � qII ; bpr, (65)

qjDD
2A

qr

� �
r¼b

¼ 0; 0pzph. (66)

According to Eqs. (63b), (65) and (66), it is evident that the mathematical formulation which yields the ‘locked’ wave

component is fully described. The latter implies that there is sufficient information for the calculation of jDD
2A which is

obtained for the corresponding hypothetical, bottom-seated uniform cylinder, with radius b. On the contrary, the above

equations do not anticipate the adoption of the ‘free’ wave potential jID
2A on the boundary r ¼ b for 0pzph. This will

be accomplished in the following section by matching the total potentials j2A and j2B on the large radius b.

In accordance with the form adopted through Eqs. (54) and (61) for writing the second-order potentials, it can be

shown that the ‘locked’ wave component Cð2A;DDÞ
m is given by (Huang and Eatock Taylor, 1996)

Cð2A;DDÞ
m ðr; zÞ ¼

X1
j¼0

Z
ð2Þ
j ðzÞZ

ð2Þ
j ðhÞ

Z 1
1

x
b

QðAÞm

x
b

� �
G
ðAÞ
mj

r

b
;
x
b

� �
d

x
b

� �
, (67)

where QðAÞm is obtained by the pressure distribution for field A (Eqs. (8) and (65)). The functions QðAÞm and QðBÞm are very

lengthy expressions and therefore their details are omitted. Furthermore, Z
ð2Þ
j ðzÞ are orthonormal functions in [0,h]

given by

Z
ð2Þ
0 ðzÞ ¼ ðN

ð2Þ
0 Þ
�1=2 coshðrAzÞ, (68)

Z
ð2Þ
j ðzÞ ¼ ðN

ð2Þ
j Þ
�1=2 cosðkjzÞ; jX1, (69)

N
ð2Þ
0 ¼

1

2
1þ

sinhð2rAhÞ

2rAh

� �
, (70)

N
ð2Þ
j ¼

1

2
1þ

sinð2kjhÞ

2kjh

� �
; jX1, (71)
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where kj are the roots of the transcendental equation

4nþ kj tanðkjhÞ ¼ 0, (72)

which has an infinite number of real roots for jX1 and one imaginary root k0 ¼ �irA which is determined by the

second-order dispersion equation

rA tanhðrAhÞ ¼ 4n. (73)
Table 1

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 8, kb ¼ 0:5, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.2371, 0.3403) (�0.0313, �0.0606)

J ¼ 50 (0.2361, 0.3400) (�0.0314, �0.0606)

J ¼ 80 (0.2341, 0.3394) (�0.0316, �0.0606)

J ¼ 100 (0.2341, 0.3394) (�0.0316, �0.0606)

J ¼ 120 (0.2341, 0.3394) (�0.0316, �0.0606)

Table 2

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 8, kb ¼ 1:0, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.2468, 1.1916) (�0.0298, �0.2282)

J ¼ 50 (0.2466, 1.1907) (�0.0298, �0.2287)

J ¼ 80 (0.2465, 1.1896) (�0.0299, �0.2290)

J ¼ 100 (0.2465, 1.1896) (�0.0298, �0.2289)

J ¼ 120 (0.2465, 1.1896) (�0.0297, �0.2289)

Table 3

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 8, kb ¼ 2:0, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.9994, 1.7116) (�0.0045, �0.3937)

J ¼ 50 (0.9983, 1.7095) (�0.0034, �0.3938)

J ¼ 80 (0.9975, 1.7083) (�0.0029, �0.3948)

J ¼ 100 (0.9976, 1.7085) (�0.0029, �0.3941)

J ¼ 120 (0.9977, 1.7085) (�0.0028, �0.3937)

Table 4

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 10, kb ¼ 0:8, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.2924, 0.8565) (�0.0221, �0.1237)

J ¼ 50 (0.2921, 0.8559) (�0.0223, �0.1241)

J ¼ 80 (0.2918, 0.8551) (�0.0224, �0.1241)

J ¼ 100 (0.2918, 0.8552) (�0.0224, �0.1243)

J ¼ 120 (0.2918, 0.8552) (�0.0224, �0.1243)
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Finally, G
ðAÞ
mj is the one-dimensional Green’s function

G
ðAÞ
mj ðr; xÞ ¼ KmðkjxÞ½ImðkjrÞ � I0mðkjbÞKmðkjrÞ=K

0
mðkjbÞ�; rox, (74)

G
ðAÞ
mj ðr; xÞ ¼ KmðkjrÞ½ImðkjxÞ � I0mðkjbÞKmðkjxÞ=K0mðkjbÞ�; r4x. (75)

The ‘free’ wave component in A can be written in a form similar to the first-order diffraction potential of the outer

field

Cð2A;IDÞ
m ðr; zÞ ¼

X1
j¼0

F
ð2AÞ
mj

KmðkjrÞ

KmðkjbÞ
Z
ð2Þ
j ðzÞ, (76)

where F
ð2AÞ
mj are the unknown Fourier coefficients. The corresponding methodology which yields both series of Fourier

coefficients F
ð2AÞ
mj and F

ð2BÞ
mj is outlined below.
2.5. Continuity of velocities and potentials at r ¼ b

The expressions for Cð2B;DDÞ
m , Cð2B;IDÞ

m , CI
m, C

ð2A;DDÞ
m and Cð2A;IDÞ

m , are derived as solutions of the Laplace equation and

are constructed in such a way that the boundary conditions on all horizontal boundaries of the fluid regions shown in

Fig. 1 will be fulfilled. The last conditions that should be enforced are the continuity of radial velocities and potentials

on the vertical boundary at r ¼ b for h1pzph (Eqs. (15) and (16)) and the zero velocity condition on the wall for r ¼ b

0pzph1 (Eq. (59). These will allow the calculation of Fourier coefficients F
ð2AÞ
mj and F

ð2BÞ
mj . Thus,

qCð2A;DDÞ
m

qr

����
r¼b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

þ
qCð2A;IDÞ

m

qr

����
r¼b

þ
qCI

m

qr

����
r¼b

¼
qCð2B;DDÞ

m

qr

����
r¼b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

þ
qCð2B;IDÞ

m

qr

����
r¼b

; h1pzph, (77)

Cð2A;DDÞ
m

��
r¼b
þCð2A;IDÞ

m

��
r¼b
þCI

m

��
r¼b
¼ Cð2B;DDÞ

m

��
r¼b
þCð2B;IDÞ

m

��
r¼b
; h1pzph, (78)
Table 5

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 15, kb ¼ 0:8, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.4754, 0.6847) (�0.0077, �0.0809)

J ¼ 50 (0.4753, 0.6844) (�0.0080, �0.0816)

J ¼ 80 (0.4752, 0.6840) (�0.0083, �0.0821)

J ¼ 100 (0.4752, 0.6840) (�0.0082, �0.0820)

J ¼ 120 (0.4752, 0.6841) (�0.0081, �0.0819)

Table 6

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 25, kb ¼ 0:8, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.2499, 0.8300) (�0.0012, �0.0467)

J ¼ 50 (0.2499, 0.8317) (�0.0017, �0.0477)

J ¼ 80 (0.2499, 0.8312) (�0.0024, �0.0487)

J ¼ 100 (0.2499, 0.8314) (�0.0021, �0.0485)

J ¼ 120 (0.2499, 0.8315) (�0.0020, �0.0484)
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qCð2A;DDÞ
m

qr

����
r¼b|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

þ
qCð2A;IDÞ

m

qr

����
r¼b

þ
qCI

m

qr

����
r¼b

¼ 0; 0pzph1. (79)

It is recalled that Z
ð2Þ
j ðzÞ and Y

ð2Þ
j ðzÞ are orthonormal functions in [0,h] and [h1,h], respectively. In order to use the

property of orthogonality which is satisfied by Y
ð2Þ
j ðzÞ eigenfunctions, all terms in Eq. (78) are multiplied with an

arbitrary Y ð2Þp ðzÞ and the resulting products are integrated over [h1,h]. The implementation of the orthogonality relation

will transform Eq. (78) to an appropriate expression which will provide the Fourier coefficients F
ð2BÞ
mj in terms of the

corresponding elements F
ð2AÞ
mj of the ‘free’ wave potential Cð2A;IDÞ

m :

F
ð2BÞ
mj ¼ � Y

ð2Þ
j ðhÞ

kb1

kh

kb1

kðh� h1Þ

Z b=b1

1

x
b1

QðBÞm

x
b1

� �
G
ðBÞ
mj

b

b1
;
x
b1

� �
d

x
b1

� �
þ
3

8

Jmð2kbÞ

sinh4ðkhÞ
Pj

þ
X1
p¼0

F ð2AÞ
mp V

ð2Þ
jp þ

X1
p¼0

Zð2Þp ðhÞV
ð2Þ
jp

Z 1
1

x
b

QðAÞm

x
b

� �
GðAÞmp 1;

x
b

� �
d

x
b

� �
. ð80Þ

Using a similar procedure, all terms in Eqs. (77) and (79) are multiplied by an arbitrary Z
ð2Þ
l ðzÞ and subsequently the

resulting equations are integrated over [h1,h] and [0,h1], respectively. The summation of the corresponding equations

will include integrals in which the orthogonality of Z
ð2Þ
j ðzÞ eigenfunctions can be directly applied and the following

relation is derived:

ðklhÞF
ð2AÞ
ml

K0mðklbÞ

KmðklbÞ
¼ �

3

4

J0mð2kbÞ

sinh4ðkhÞ
ðkhÞW l þ

X1
j¼0

F
ð2BÞ
mj sjðh� h1ÞR

0ð2BÞ
mj ðsjbÞV

ð2Þ
jl . (81)

Combining Eqs. (80) and (81), the Fourier coefficients F
ð2AÞ
mj will be given by the following truncated linear matrix

system:

½Epp�mfF
ð2AÞ
mp g ¼ fDpgm, (82)
Table 7

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 4, kb ¼ 1:0, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.2817, 1.2513) (�0.1475, �0.4558)

J ¼ 50 (0.2812, 1.2476) (�0.1475, �0.4559)

J ¼ 80 (0.2812, 1.2387) (�0.1478, �0.4557)

J ¼ 100 (0.2813, 1.2388) (�0.1478, �0.4556)

J ¼ 120 (0.2813, 1.2389) (�0.1478, �0.4556)

Table 8

Convergence of the total nondimensional second-order horizontal and vertical forces f ð2Þx2
and f ð2Þz2

(real, imag) acting on a bottom-

seated surface-piercing compound cylinder (h=b ¼ 2, kb ¼ 2:0, b1=b ¼ 0:5, h1=h ¼ 0:5)

Number of eigenmodes f ð2Þx2
f ð2Þz2

J ¼ 30 (0.9803, 1.8813) (0.0346, �1.5338)

J ¼ 50 (0.9810, 1.8802) (0.0352, �1.5326)

J ¼ 80 (0.9852, 1.8793) (0.0360, �1.5304)

J ¼ 100 (0.9850, 1.8794) (0.0360, �1.5303)

J ¼ 120 (0.9850, 1.8794) (0.0360, �1.5302)
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which is solved m times for all p Fourier coefficients F ð2AÞ
mp . [Epp] is a square (p� p) complex matrix while {Dp} is a (p� 1)

column matrix. The elements of these matrices and the nondimensional factors Wl, Vjl
(2) and Pj involved in Eqs. (80)

and (81) are given in Appendix A. Finally, the corresponding Fourier coefficients for the upper inner fluid domain B can

easily be determined through Eq. (80).
3. Numerical calculation and convergence of integrals

The solution method which is followed in the present work for the derivation of the second-order diffraction

potentials is a semi-analytical formulation which allows matching of the potentials along the adjacent boundaries of the

wave fields A and B. The numerical part of the solution concerns only the calculation of integrals

I
ðAÞ
mj ðrÞ ¼

Z 1
1

x
b

QðAÞm

x
b

� �
G
ðAÞ
mj

r

b
;
x
b

� �
d

x
b

� �
, (83)

I
ðBÞ
mj ðrÞ ¼

Z b=b1

1

x
b1

QðBÞm

x
b1

� �
G
ðBÞ
mj

r

b1
;
x
b1

� �
d

x
b1

� �
(84)

at any point r of the wave fields A and B. The numerical integration method which is implemented herein is a

Gauss–Legendre N-point quadrature formula (Press et al., 1986). The analytical derivation of integrals is avoided

because of the excessively complicated forms of the pressure distributions QðAÞm and QðBÞm . The second integral (84)

can be obtained easily as the integration limits are finite and, even for a large upper limit b/b1, a small number of

integration points provide satisfactory predictions. In all cases examined here, the use of 100 integration points

was proven to be sufficient. The major difficulty arises from the first integral (83). Based on the fact that this expression
Table 9

Comparative results for nondimensional horizontal forces, acting on a bottom-seated surface-piercing uniform cylinder with h ¼ b

nb 1.2 2.0 2.8

Re Im Re Im Re Im

f ð1Þx
Kim and Yue (1989) 0.708 �2.351 �0.264 �1.606 �0.746 �0.743

Present 0.712 �2.530 �0.259 �1.607 �0.742 �0.745

f ð2Þx1
Kim and Yue (1989) �1.648 �0.308 �1.094 0.849 0.892 1.341

Present �1.650 �0.312 �1.102 0.843 0.884 1.352

f ð2Þx2
Kim and Yue (1989) 2.259 �0.136 1.972 �1.835 �2.209 �3.606

Present 2.286 �0.143 1.988 �1.858 �2.218 �3.617

Table 10

Comparative results for the amplitudes of nondimensional horizontal forces acting on a bottom-seated surface-piercing uniform

cylinder with h=b ¼ 4

kb jf ð2Þx2
j jf ð2Þx1

j

Present Mavrakos and Peponis (1992) Present Mavrakos and Peponis (1992)

1.0 3.020 3.000 1.412 1.492

1.2 3.735 3.717 1.666 1.641

1.4 4.400 4.473 1.868 1.868

1.6 4.965 4.968 1.987 1.958

1.8 5.123 5.089 1.821 1.821

2.0 4.935 5.033 1.516 1.545
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is slowly convergent, a suitable manner to approach the integration is to split the integral. Thus, Eq. (83) can be

transformed intoZ 1
1

¼

Z r1=b

1

þ

Z r2=b

r1=b

þ � � � þ

Z rn=b

rn�1=b

þ � � � . (85)

The Gauss–Legendre quadrature formula is applied to all parts of the above summation. The necessary number of

integration points in each integral depends on the distance between the integration limits. The larger the distance is, the

more integration points are needed. In order to simplify the solution algorithm, evenly spaced limits have been selected.

In particular, for all cases considered here, a difference of 100b was chosen, i.e., rn=b� rn�1=b ¼ 100. Next, for the

correct numerical prediction of each consecutive integral, a sufficient number of integration points must be used.
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Fig. 2. Absolute values of dimensionless wave elevation around the circumference of a uniform, bottom-seated, surface-piercing,

vertical cylinder: — � — � —, jZ(1)/(H/2)j; - - - - - - -, jZ(2)1 b/(H/2)2j; ———, jZ(2)2 b/(H/2)2j. (a) h=b ¼ 8, nh ¼ 4:024, symbols denote

results reported by Chau and Eatock Taylor (1992); (b) h ¼ b, nh ¼ 2, symbols denote results reported by Kim and Yue (1989).
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A common rule for having an indication for the number of points which are needed in order to obtain satisfactory

results is based on the fact that more points should be used for stronger anticipated diffraction phenomena (large b/h).

Since the magnitude of the contribution of each integral to the total value is reduced for increasing n, the number of

integration points which must be chosen can be controlled by inspecting the values of the first integral. The evaluation

procedure is terminated when the value of an integral is smaller than a prescribed error or when the difference between

two consecutive integrals is sufficiently small. The error values which were used in the present were 1� 10�4 and

1� 10�6, respectively. This holds for all m, j and r.
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Fig. 3. Amplitudes of the first- and second-order wave excitation components in the horizontal direction on a uniform, bottom-seated,

surface-piercing, vertical cylinder: ———, j fx
(1)
j; - - - - - - - - -, jfx1

(2)
j; — � — � —, jfx2

(2)
j; (a) h ¼ b, symbols denote the results reported

by Kim and Yue (1989), (b) h¼ 4b, symbols denote the results reported by Mavrakos and Peponis (1992).
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4. Second-order wave elevation and wave loads

The final relations that describe the first- and second-order wave elevations and wave loads are very lengthy

expressions. Therefore, only the general expressions are provided herein. However, it is important to notice that the

integrals involved in the calculation of the vertical wave forces (integration with respect to the radial coordinate r) are

determined numerically using the above-mentioned Gauss–Legendre quadrature formula.

The fluid force exerted on the body is obtained by integrating the fluid pressure over the submerged body surface.

After omitting 3rd order terms and above, the following expressions for the time-varying first- and second-order forces
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 4. Amplitudes of the first- and the second-order wave excitation components in the horizontal and vertical direction on a bottom-

seated, submerged cylinder (h=b ¼ 3, h1=h ¼ 0:5, b1=b ¼ 0:01): ———, jfx
(1)
j and jfz

(1)
j; - - - - - - - - -, jfx2

(2
j and jfz2

(2)
j. Symbols denote the

results reported by Abul-Azm and Williams (1988): (a) horizontal force, (b) vertical force.
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Fig. 5. Absolute values of dimensionless wave elevation jZ2
(2)b/(H/2)2j around a uniform, bottom-seated, surface-piercing vertical

cylinder. (a) nh ¼ 2:0, kb ¼ 2:0653, h ¼ b, (b) nh ¼ 8:0, kb ¼ 2:0, h=b ¼ 4. Wave direction is from positive to negative X.
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can be derived (Ogilvie, 1983):

F
ð1Þ
k ¼

ZZ
SB0

iorj1nk dS; (86)

F
ð2Þ
k ¼

ZZ
SB0

2iorj2 �
1

4
rrj1rj1

� �
nk dS þ

1

4

Z
CB0

Zð1ÞZð1Þnk dC, (87)
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Fig. 6. Absolute values of dimensionless wave elevation jZ2
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where SB0
is the mean wetted surface of the body, CB0

is the waterline and nk is the kth component of the normal which

was chosen to point out of the fluid domain. Also, in the above equations, Z(1) is the first-order wave elevation which is

calculated by

Zð1Þ ¼
io
g
j1. (88)

The corresponding second-order wave elevation—which also provides the wave run-up on the body for r ¼ b1 for a

vertical compound cylinder—is given by

Zð2Þ ¼
2io
g

j2 �
1

4g
rj1rj1 �

n2

2g
j1j1. (89)

The numerical predictions for the wave elevation and wave loads which are presented in the following section have

been normalized by rgb2ðH=2Þ and rgbðH=2Þ2 for the first- and second-order forces and by H/2 and ðH=2Þ2=b for the
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first- and second-order wave elevation, respectively. Finally, Zð2Þ1 , F
ð2Þ
k1

and Zð2Þ2 , F
ð2Þ
k2

will symbolize the components of the

nonlinear wave elevation and wave forces which are obtained through the first- and second-order potentials,

respectively.
5. Numerical results and discussion

The main objective of the present contribution is to introduce an efficient method for the solution of the second-order

diffraction problem around a complex, one-step, bottom-seated, surface-piercing vertical cylinder and to investigate the

changes in the water field with respect to the size of the small radius b1 and the height of the step h1. This is

accomplished with the aid of the numerical predictions for the vertical and the horizontal second-order forces acting on
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the cylinder and the wave elevation up to a sufficient radial distance from the body’s wetted surface. The method

outlined previously is appropriate to be used also for a uniform surface-piercing cylinder, as well as for a bottom-seated

fully submerged cylinder. This can be carried out by adjusting the values of b1 and h1, which can vary in the ranges [0,b]

and [0,h], respectively. These values can never coincide with the end-most limits of the afore-mentioned ranges as the

method collapses. It is evident that this is actually an approximation but, as shown later, a very accurate one. In the

present contribution, a uniform bottom-seated, surface-piercing cylinder is simulated by h1=h ¼ 0:9 and b1=b ¼ 0:999,
and a fully submerged bottom-seated cylinder by b1=b ¼ 0:01.

5.1. Validation and convergence of the method

The convergence of the results which are obtained by the solution of the second-order diffraction problem depends

on the number of Fourier coefficients M and the number of eigenmodes J in fields A and B. It should be noted that for
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(2)b/(H/2)2j above a bottom-seated fully submerged, vertical cylinder for
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all calculations the number of eigenmodes in both fields was always equal, although the smaller height h–h1 in the water

region B could justify the use of fewer eigenmodes.

The use of a sufficiently large M for the Fourier coefficients which contribute to the solution will practically eliminate

the dependence of the convergence from M. For all calculations performed for the purposes of the present contribution,

M was set equal to 10, which was proven to be a satisfactory approximation. Thus, only the influence of vertical

eigenmodes J is investigated here. The convergence of the results with respect to the number of the vertical eigenmodes

J for various configurations of surface-piercing compound cylinders is examined with the aid of Tables 1–8. In all

cylinders, the step on the body is located at the middle of the depth (h1=h ¼ 0:5) and the radius of the upper part of the

body is equal to the half of the radius of the base (b1=b ¼ 0:5).
Tables 1–3 show the results for the nondimensional components of the second-order wave forces f ð2Þx2

and f ð2Þz2
which

were obtained by convergence studies for constant kb and variable depth h/b, while Tables 4–6 show the corresponding

results for constant water depth h/b and variable kb. In order to verify the conclusions regarding the number of

eigenmodes that should be used for achieving acceptable convergence, additional runs were performed for various
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cylinder types. Indicative results for different compound axisymmetric bodies are presented in Tables 7 and 8. By

inspecting the values of forces that are listed in the tables, it is easy to conclude that the use of 10 Fourier coefficients

and 50 vertical eigenmodes ensures an accuracy of more than 99%. This is valid even for very deep water (Table 6).

Next the efficacy of the present method is confirmed by comparing the calculated results with existing numerical data

reported by other authors in the past. The comparisons concern uniform surface-piercing cylinders with b � b1 and fully

submerged cylinders with b15b. To this end, Tables 9 and 10 and Figs. 2–4 are given. Table 9 shows the Real and

Imaginary parts for the first- and the components of second-order exciting force on a uniform cylinder with h ¼ b and for

three values of nb, while Table 10 lists the amplitudes of the second-order components on a cylinder with h ¼ 4b and for

various kb. The same results are depicted also in Fig. 3. The comparison confirms the favourable coincidence between

predictions by the present method and those due to Kim and Yue (1989) and Mavrakos and Peponis (1992), respectively.

Figs. 2(a) and (b) depict the wave run-up on two uniform bottom-seated, free-surface piercing cylinders with h ¼ 8b and

h ¼ b, respectively. A good agreement is again observed between the present results and those obtained by Chau and Eatock
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Taylor (1992) and Kim and Yue (1989). This demonstrates the effectiveness of the present method in providing reliable

predictions, even if it is employed for studying the wave field around uniform cylinders. In particular, the results show a

pronounced variation of wave run-up due to second-order potential in the whole range of azimuthal angle. The specific

contribution is of the same order of magnitude when it is compared with the other second-order quantities for h ¼ b, Fig. 2(b),

and considerably higher for h ¼ 8b, Fig. 2(a). As far as the wave loads are concerned, the contribution of the second-order

potential is the major component of the total second-order terms. The corresponding horizontal nonlinear force exhibits a wavy

trend, attaining higher values for larger kb or nb contrary to the first-order force which progressively decays (Fig. 3).

For confirming the effectiveness of the proposed semi-analytical solution methodology when it is used for solving the

second-order diffraction problem around submerged cylindrical bodies, additional tests were performed for the

calculation of the first- and second-order forces on a cylinder with h=b ¼ 3, h1=h ¼ 0:5, b1=b ¼ 0:01. The results

obtained by the present method, are compared in Fig. 4 with those reported by Abul-Azm and Williams (1988). As can

be seen, the agreement is again quite satisfactory and it is observed that the contribution of the second-order effects is

reduced as the wave frequency kb obtains higher values.
5.2. Wave elevation around a vertical one-step bottom-seated compound cylinder

This is investigated with the aid of Figs. 5–12. Fig. 5 shows the wave elevation around two different uniform

cylinders. These plots are given as a reference for comparison with compound cylinders. In all 3-D plots, the Cartesian
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coordinates have been normalized with respect to the large radius b. In these particular cases the wave elevation

patterns due to the second-order potentials, appear to be similar, while for deeper water, Fig. 5(b), the maximum wave

elevation is higher. In both cases the maximum run-up is detected on the lee side of the cylinder. The alteration in the

wave field characteristics—and in general in the wave elevation—due to the change in cylinder’s diameter is considered

through 3-D plots in Figs. 6–9. These figures depict the wave elevation around a compound cylinder for two different

small radii b1 (b1=b ¼ 0:5 in Figs. 6 and 8, and b1=b ¼ 0:01 in Figs. 7 and 9) and two different wave frequencies (nb ¼ 2

in Figs. 6 and 7, and nb ¼ 1 in Figs. 8 and 9). In both cases, the step along the cylinder is located at the middle of the

water depth (h1=h ¼ 0:5). The case b1=b ¼ 0:01 could be considered as a fully submerged, bottom-seated uniform

cylinder condition. Figs. 6–9 support the general impression that any alteration in cylinder dimensions should be

reflected also on the free surface. The wave run-up on the small diameter which pierces the free surface exhibits a strong

variation around the cylinder circumference and the wetted area due to the second-order potential is considerably

increased for both wave frequencies considered (Figs. 6 and 8). When the upper diameter of the complex cylinder is very

small (Figs. 7 and 9), then it could be assumed as a fully immersed block that obstructs the free water flow. The

existence of the underwater body is directly reflected on the water surface and the induced disturbances are more

pronounced for high excitation frequencies and smoother for lower frequencies. The location of the cylinder in the wave

field is noticeable through the ‘bump’ on the surface.

Similar conclusions are drawn for deeper water and shorter base (h=b ¼ 4, h1=h ¼ 0:2, Figs. 10–12). For better

understanding of the numerical predictions for the water surface elevation, the wave patterns in the inner and outer

fields due to the second-order potential are shown separately in Figs. 10 and 11. Again it is observed that the particular

body geometry leads to an amplification of the wave run-up on the body’s surface (compare Figs. 5(b) and 10(b)),

despite the fact that the step is very close to the floor. The maximum run-up is located on the lee side only for the higher-

frequency case (Figs. 10(b) and (c)), while for the smaller wave frequency the maximum run-up occurs at an azimuthal

angle of around 701 (Figs. 12(a) and (b)). It is also interesting to emphasize the extreme disturbances of the water

surface around the surface-piercing part of the cylinder. Apparently, the perturbations dominate on a wide area around

the body (Fig. 10(a)). Figs. 11(b) and (c), and 12(c) and (d) indicate the location in which a fully immersed cylinder is

installed. The maximum values of the wave elevation just above the cylinder are very small, as the cylinder was assumed

sufficiently short (h1=h ¼ 0:2). Although the existence of the body inside the fluid domain is not capable of changing

drastically the basic characteristics of the wave field, the location of the cylinder may be detected through the

disturbances which occur on the free surface.
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The impact of the wave run-up on the compound cylinders examined in Figs. 5–9 is shown in more detail in Figs. 13

and 14. Here, the wave elevation on the circumference of the waterline of the axisymmetric body is plotted against the

azimuthal angle. For comparison, Fig. 14 includes also the wave elevation components due to the second-order

potential for the equivalent uniform surface-piercing cylinder. In Fig. 13 the linear and second-order counterparts of the

wave run-up for a uniform cylinder are plotted. This corresponds to a small excitation frequency nb ¼ 1 and indicates

that the dominant second-order contribution to wave run-up originates from the second-order potential. It should be

mentioned that a different conclusion was drawn for a higher excitation frequency (nb ¼ 2, Fig. 2(b)). Also, Fig. 14

shows that a reduction in cylinder diameter may have a negative impact as far as the wave elevation is concerned. In

cases of compound surface-piercing cylinders (Figs. 14(a) and (c)), the wave elevation is considerably higher compared

that for the equivalent uniform cylinder. For totally immersed bodies however, (Figs. 14(b) and (d)), there is a

significant reduction on the surface elevation above the cylinder for higher excitation frequencies. Another feature

which should also be noticed is that the use of a compound cylinder with smaller upper diameter results in a very much
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higher run-up on the impact point y ¼ 0, while the corresponding value on the lee is reduced. This can be observed for

both wave frequencies examined in Fig. 14(a) and (c).
5.3. Second-order exciting forces

The results for the exciting forces are show in Figs. 15–17. Fig. 16 shows the linear and the oscillating second-order

exciting forces acting on a compound bottom-seated cylinder with h ¼ 4b, h1=h ¼ 0:6, b1=b ¼ 0:5. The corresponding

results for h1=h ¼ 0:8, b1=b ¼ 0:8 are depicted in Fig. 17. The latter case is closer to the uniform cylinder condition.

Useful qualitative information about the second-order contribution to the total wave loading can be drawn through

these plots. Firstly, the second-order component due to the first-order potential is relatively insignificant. On the
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contrary, f ð2Þx2
and f ð2Þz2

are very important for higher nondimensional frequencies kb, in which the magnitudes of the first-

order forces decay drastically. The horizontal forces f ð2Þx2
, acting on compound cylinders, exhibit apparent similarities

with the horizontal forces on the corresponding uniform cylinders. This can be seen by comparing the pairs of Figs. 3(a)

and 15, Figs. 3(b) and 16(a) as well as Figs. 3(b) and 17(a). An important feature which must also be noticed is the

smoothing of the variation curves through the elimination of the multiple local maxima and minima which characterize

the variation of the second-order force f ð2Þx2
especially for large cylinders (Fig. 3(a)). However, the magnitude of the

specific component continues to increase for higher wave frequencies.

The most apparent similitude is observed between the f ð2Þx2
curves depicted in Figs. 3(b) and 17(a). This can be traced

back to the fact that the compound cylinder that is examined in Fig. 17 has large values h1/h and b1/b, which in turn

implies that the size of the inner field B is sufficiently small. Thus, the small ring shaped field B does not change

drastically the pressure field around the cylinder. As a result, the wave loads should be comparable to those acting on

the equivalent uniform cylinder.

The vertical forces due to the second-order potential, exhibit a notable variation with respect to the excitation

frequency, as manifested in Figs. 16(b) and 17(b). It is interesting to highlight that this variation depends primarily on

the size of the small upper part of the axisymmetric body. For h1=h ¼ 0:8 and b1=b ¼ 0:8, two local amplifications

occur, while for h1=h ¼ 0:6 and b1=b ¼ 0:5 only one.

6. Conclusions

The second-order diffraction problem around a bottom-seated compound cylinder was investigated. The proposed

method was based on a semi-analytical formulation of the total velocity potentials which describe the wave fields defined by

the geometry of the structure. It was suggested that the particular solution methodology is appropriate to be used also for a

uniform bottom-seated surface-piercing cylinder, as well as for a fully submerged cylinder fixed on the floor.

The method was validated using the numerical predictions reported by other authors in the past. Good agreement

was observed with the existing numerical data.

The changes in the fluid field because of the existence of a step on the vertical axisymmetric body were investigated

through the wave run-up around the circumference of the waterline and the second-order forces which are exerted on

the body. Extensive numerical calculations were presented for completely submerged axisymmetric bodies. The specific

case was properly simulated by minimizing the radius of the upper axisymmetric part of the body. The method was

implemented for the calculation of the second-order horizontal and vertical forces. It was observed that the horizontal

forces due to the second-order potential, acting on vertical compound cylinders, exhibit a similar behaviour to the

horizontal forces on the corresponding uniform cylinders. Finally, a notable variation of the second-order vertical

forces was detected and it was shown that the number of local maxima for the same wave frequency range depends on

the size of the small upper part of the complex cylinder.
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Appendix A. Elements of the matrices in Section 2.5

W l ¼
1

h

Z h

0

coshð2kzÞZ
ð2Þ
l ðzÞdz

¼ N
ð2Þ
l

h i�1=2 klh coshð2khÞsinðklhÞ þ 2kh cosðklhÞsinhð2khÞ

ð2khÞ2 þ ðklhÞ
2

, ðA:1Þ

Pj ¼
1

h� h1

Z h

h1

coshð2kzÞY
ð2Þ
j ðzÞdz

¼
M
ð2Þ
j

h i�1=2
½2kðh� h1Þ�

2 þ ½sjðh� h1Þ�
2

sjðh� h1Þcosð2khÞsin½sjðh� h1Þ�

2kðh� h1Þcos½sjðh� h1Þ�sinhð2khÞ

�2kðh� h1Þsinhð2kh1Þ

8>><
>>:

9>>=
>>;, ðA:2Þ
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V
ð2Þ
jl ¼

1

h� h1

Z h

h1

Y
ð2Þ
j ðzÞZ

ð2Þ
l ðzÞdz ¼

1

2

M
ð2Þ
j

h i�1=2
N
ð2Þ
l

h i�1=2
½klðh� h1Þ�

2 � ½sjðh� h1Þ�
2
�

�2klðh� h1Þ sinðklh1Þ

þ½klðh� h1Þ þ sjðh� h1Þ�sin½klh� sjðh� h1Þ�

þ½klðh� h1Þ � sjðh� h1Þ�sin½klh� sjðh� h1Þ�

8>><
>>:

9>>=
>>;, ðA:3Þ

Epl ¼ ðkphÞ
K0mðkpbÞ

KmðkpbÞ
dpl �

X1
j¼0

sjðh� h1ÞR
02B
mj ðsjbÞV

ð2Þ
jp V

ð2Þ
jl , (A.4)

Dl ¼ �
3

4

J0mð2kbÞ

sinh4ðkhÞ
ðkhÞW l þ

3

8

Jmð2kbÞ

sinh4ðkhÞ

X1
j¼0

sjðh� h1ÞR
0ð2BÞ
mj ðsjbÞV

ð2Þ
jl Pj

þ
X1
j¼0

X1
p¼0

Zð2Þp ðhÞV
ð2Þ
jp V

ð2Þ
lj sjðh� h1ÞR

0ð2BÞ
mj ðsjbÞ

Z 1
1

x
b

QðAÞm

x
b

� �
GðAÞmp 1;

x
b

� �
d

x
b

� �

�
X1
j¼0

Y
ð2Þ
j ðhÞsjðh� h1ÞR

0ð2BÞ
mj ðsjbÞV

ð2Þ
lj

kb1

kh

kb1

kðh� h1Þ

Z b=b1

1

x
b1

QðBÞm

x
b1

� �
G
ðBÞ
mj

b

b1
;
x
b1

� �
d

x
b1

� �
, ðA:5Þ

where dpl is Kroneker’s delta.
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